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The response of an incompressible, 
viscoelastic coating to pressure fluctuations in a 

turbulent boundary layer 
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(Received 11  November 1985 and in revised form 10 April 1986) 

The response of the interface between a compliant surface and a turbulent boundary- 
layer flow is examined theoretically. This response is forced by transient, convected, 
interfacial pressure pulses that represent the footprints of turbulent flow structures 
in the boundary layer. Calculations are presented for coatings with a wide range of 
damping and densities equal to the density of the flow. For coatings with moderate 
damping, three regimes of response are found. When the flow speed U ,  is less than 
about 1.2 (non-dimensionalized by the shear wave speed of the coating), the response 
is stable and primarily localized under the pressure pulse. For flow speeds from 1.2 
to as high as 2.8, depending on the damping, the response is also stable, but it 
includes a wave pattern behind the pressure pulses. For flow speeds above 2.8, the 
response is unstable and eventually forms a two-dimensional wavetrain moving in 
the flow direction. A t  the highest stable flow velocity, the amplitude of the surface 
displacements reaches 4.0 % of the boundary-layer displacement thickness S* and the 
energy transfer from the pressure pulse reaches 5.0 x uZ,(S*)2. For high 
damping, the coating response is again stable when the flow speed is below 2.8. 
However, there is no wavelike response regime ; the path that is traversed by the 
pressure pulse is covered by a scar that heals according to the viscous relaxation 
properties of the material. The amplitude of the response is at most 0.016*. 

1. Introduction 
A number of investigators have attempted to design a compliant layer that can 

reduce skin friction when placed between a rigid surface and a turbulent boundary- 
layer flow. This work has been reviewed by Bushnell, Hefner & Ash (1976) and more 
recently by Gad-el-Hak (19863). In order to achieve the desired reductions, the 
proposed compliant layer must alter the behaviour of turbulent flow structures by 
deforming in response to the unsteady pressures and shear stresses imposed on its 
surface by the flow structures themselves. This response can be stable or unstable. 
For single-layer, homogeneous, incompressible, isotropic coatings under turbulent 
boundary-layer flows, instabilities occur when the ratio of the dynamic pressure of 
the flow divided by the shear strength of the coating pc C,Z (where pc is the coating 
density and C, is the shear wave speed of the coating) reaches a critical value 
(Duncan, Waxman & Tulin 1985). The critical value depends on the damping in the 
coating, the ratio of the coating thickness to the boundary-layer thickness, and tJhe 
Reynolds number of the flow. For coatings with high damping these instabilities have 
been studied experimentally by Gad-el-Hak, Blackwelder & Riley (1984), Hansen & 
Hunston (1983), and Hansen et al. (1979). The theory of Duncan et at!. (1985) 
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evaluated at high damping compares well with the experimental results. Instabilities 
have also been explored experimentally for coatings with low damping (Gad-el-Hak 
1986~) .  No theoretical results have been reported in this case. In the presence of 
instabilities, the surface is dominated by two-dimensional, large-amplitude waves 
which will most certainly alter the turbulent boundary layer. However, experiments 
with compliant coatings (A. D. Rathsam 1985, private communication; Hansen 6 
Hunston 1983) and experiments and numerical calculations with moving wavy walls 
(Kendall 1970; Lin, Walsh & Balasubramanian 1984; Sengupta &, Lekoudis 1985) 
have shown that these organized wave motions increase the surface drag when 
moving at typical wave speeds. The presence of these large-amplitude waves also 
masks the smaller-amplitude, local response of the surface to individual turbulent 
flow structures. 

In the present paper, the response of the coating to individual turbulent flow 
structures (for example turbulent bursts) is examined under stable conditions. In  
order to analyse the full problem, one would need accurate models of the dynamics 
of turbulent flow structures, the dynamics of complex viscoelastic materials, and the 
coupling between the fluid and the solid. The most complete method to investigate 
this problem would be a large-eddy simulation with a compliant wall. However, it  
is advantageous to gain some physical insight into the problem before undertaking 
the expense and time of large-eddy simulations. To this end, a simplified, two- 
dimensional, quasi-interactive problem has been examined in this paper using a 
model where a translating, unsteady pressure pulse is imposed on the upper surface 
of a layer of incompressible Voigt material. The material is attached to a rigid surface 
on its lower side and is bounded by a potential flow, representing the mean 
boundary-layer flow, on the other. Thus, the model allows for a full interaction 
between the coating and the mean flow, but only a one way interaction between the 
imposed pressure distribution and the coating. This approach is similar to that used 
in spectral theories of flow-induced vibrations of panels (Dowel1 1975). In order to 
relate the problem to turbulent flows, the characteristics of the pressure pulses are 
taken from measurements with turbulent flows over rigid walls (Willmarth 1975), 
and the potential flow is modified to incorporate the reduced magnitudes and phase 
shifts found experimentally in boundary-layer flows over moving wavy walls 
(Kendall 1970). This model is used first to calculate the dispersion curves for 
elemental waves on the interface. From the dispersion curves, the range of stable flow 
speeds is determined as a function of the stiffness, damping and thickness of the 
coating. Within the stable range of parameters the response of the coating is 
examined. In particular, the general shape and amplitude of the response and the 
energy transfer to the flow-coating system are calculated. The dispersion curves are 
also used in a quasi-steady theory to compute the lines of constant phase for the 
three-dimensional problem. 

2. Theoretical analysis 
2.1. Statement of the problem 

The coating is modelled as a layer of homogeneous, isotropic, Voigt material. On its 
lower surface (y = -d) the coating is attached to a rigid plate, while on its upper 
surface i t  is bounded by a fluid flow (see figure 1) .  The derivation is performed for 
a compressible material ; however results are given for the incompressible case only. 
The differential equation of motion for a Voigt material is (see Fung 1965) 
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FIQURE 1. Schematic of the flow-coating system. 

where f is the displacement vector (= @+T,$ and C, and C, are the shear and 
longitudinal wave speeds of the solid. In wave number-phase speed space for small 
strains they take the form 

(2) 

where and are the real parts of CZ, and P,, k is the wavenumber (27r/A), 
C( = c/Ct) is the dimensionless phase speed, and yt and yc are the dimensionless 
damping ratios defined as 

(3) 

C$ = G(l-ikdCy,), CZ, = q(l-ikdC%y,), c, 

The relaxation times 7t and 7/ indicate the dissipative properties of the materials. 
For incompressible materials, the damping properties are sometimes reported in 
terms of the loss tangent, tans,  rather than T ~ .  In  terms of the loss tangent 
Tt = tanb/w,, where 0, is the frequency of the wave motion. 

There are four boundary conditions for the present problem. In their linearized 
form they can be written: 

uyy=-pf-P, ,  y = o ,  (4) 

uzy = 0, y = 0, (5 )  

[ = O ,  y = - d ,  (6) 

q = O ,  y = - d ,  (7) 
where uyy and uzy are the normal and shear stresses which have the form 

Boundary conditions (6) and (7) state that there is no horizontal or vertical 
displacement at the lower boundary, y = -d. The continuity of force conditions at 
the upper boundary are given by (4) and (5).  In the present model the flow pressure 
and the vertical stress component in the coating are matched at the interface, while 
the shear stress is taken to be zero. This approximation and the forms for the 
pressures will be examined later. 

For initial conditions it is assumed that there are no disturbances in the coating 
at t = 0. Thus 

c = { = O ,  t = 0 ,  C O , < X , < G O ,  - d , < y , < O .  (10) 
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2.2. Transformation of the problem 

The solution of these equations is obtained by standard techniques which are 
outlined below. The reader is referred to  Miklowitz (1978) for a more detailed 
account. Basically, the displacement field is broken into irrotational and incompres- 
sible parts and then Fourier transformed in x and Laplace transformed in time. The 
equations of motion lead to  ordinary differential equations in y and these are solved 
analytically. In  transform space the displacements are then 

2 ik 
[ = -  sinh(ay)A+ik cosh (ay)B+cosh (Py)C+Psinh(/?y) D, 

a 

5 = cosh (ay) A +a sinh (ay) B - - sinh (by) C-ik cosh (By) 0, ik 

P 

where 

and the Fourier and Laplace transforms of a variable Q are defined as 

where p = -ikc and c is the complex phase speed. The four constants A, B, C and 
D in (1  1) will be evaluated through the four boundary conditions (4)-(7). However, 
the pressure terms Pd and p f  must be evaluated first. 

2.3. Forms for the surface pressure 
The disturbance pressure that drives the coating motion is given by Pd, while the 
induced pressure component p f  models the effect of the mean flow over the wavy 
surface. The disturbance-pressure term models the pressure footprint caused by an 
individual turbulent burst or eddy in the boundary layer. It is realized that the 
pressure disturbance is accompanied by a shear-stress variation that is significant but 
somewhat smaller in magnitude (Willmarth 1975). However, the effect of the shear 
stress is left to  later studies. An approximate general form for the pressure is 

‘d = 6!?(t)f(x-Udt), (14) 

where ud is the convection speed of the disturbance which is always less than U,. 
Equation (14) is used to model a pressure distribution of constant shape f that is 
convected a t  a constant speed, grows in strength from zero to a maximum and then 
decays back to  zero according to the function g. The shape function f is chosen to 
approximate the pressure distribution from a vortex moving over a rigid surface a t  
constant speed, strength and height a. Thus 

a2 
a 2 + ( z -  Udt)2’ 

f(x- U,t )  = 

The vortex height a is chosen as the distance from the wall where the mean flow 
velocity in the boundary layer equals the convection speed of the pulse. Measurements 
of pressure fluctuations on rigid walls (Willmarth 1975) have shown that most 
pressure distributions move at a speed of 0.8U,. For Reynolds numbers based on 



An incompressible viscoelastic coating in a turbulent boundary layer 343 

t 

FIGURE 2. The temporal behaviour of the disturbance pressure: g( t )  = e-4t sin (at)/0.26461 

a downstream distance between 5.0 x lo5 and lo’, the +th-power law can be used. 
Thus a = 1.76*, where S* is the displacement thickness of the boundary layer. The 
strength P, can also be taken from Willmarth (1975) 

P, = 0.0055~~ UZ,. (16) 

Finally a form for g ( t )  must be chosen. Willmarth (1975) reports that  the pressure 
events last for the time Td, in which they travel about six of their own lengthscales 
(in this case 2a).  Thus the g ( t )  must be zero for t < 0 and t > Td and must increase 
to a maximum and then decay in the interval 0 < t < Td. The following equation, 
which approximates this behaviour, was chosen for mathematical convenience : 

where s = n/Td = nUd/12a. The ratio r / s  is set to - 4 / q  and this implies 
[ert sin (st)Imax = 0.264 16. A plot of the function appears in figure 2. Using (15) and 
(17), the Fouriel-Laplace transform of the disturbance pressure is 

The induced pressure pI  is modelled with a modified potential flow as used by Duncan 
et al. (1985). In  this model, the equation for the pressure due to a potential flow over 
the wavy surface is derived first. I n  transform space it has the form 

Of coume, any real boundary-layer flow does not follow this potential-flow result. In  
order to account for the boundary layer, the prediction of the potential flow is altered 
to  include a reduced magnitude and a phase shift. Thus the pressure term takes the 
form 

This is a reasonable approximation in view of Kendall’s (1970) experimental data and 
Benjamin’s (1959) theoretical results. 
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2.4. Solution in the transformed space 
In the transformed space the problem is solved by placing the solutions to the 
equations of motion ( 1  I )  and the forms for the surface pressures, (18) and (20), into 
the boundary conditions (4)-(7) and solving for the constants in (1 1 ) .  In the present 
case, the vertical displacement a t  the surface of the coating is required. This is 

ily_o = A-ikD. obtained from (1  1 )  : 

Thus, only the two constants A and D need to be evaluated. From linear algebra, 

(21) 
- 

A=- COF,, D=- 'OF,, 
DET ' DET ' 

where 
k2 

COF,, = q ( k 2 + p ) ( -  cosh (ad) sinh (pd)-a sinh (ad) cosh (pd)), (23) B 

COP,, = - 2 i k q  cosh (ad) sinh (pd) -a sinh (ad) cosh (pd)) , (24) 

ei8fk(g8-k2)(; coshad sinhpd-a coshpd sinhad 

- 4 5 (k2 +$) k2 +@T (k2 +$)2 cosh ad cosh pd -" sinh ad sinh /3d 
(? (? ( aB 

+4@Tk2(k2 coshad coshpd-apsinhad sinhpd). (25) c,z 
2.5. Inversion of the transform 

The inversion of the Laplace transform for the displacement, 

is performed in a manner similar to Miklowitz (1978). The interested reader is referred 
to his book for a detailed account of the method. Briefly, a contour integration is 
carried out and it is shown that the integral in (26) is equal to the sum of the 
contributions from each of the poles of pd and the places where DET = 0. Performing 
these operations and inverting the fourier transform we find that the displacement 
in physical space has the form 

xsa e d k l  COF,, - ik COF,, ikz,+p,t 
e 

P-Pl 
+; 

[(p' - r ) 2  + s2 (d DETldp) 

where p' = p+ikUd, 2' = 2- Udt. 

The p, k (or equivalently c, k) pairs for which DET = 0 define the dispersion 
relation for elemental plane waves in the flow-coating system. Note that the effect 
of the flow on the dispersion relation enters through the induced-pressure term in (4). 
The zeros of the determinant were found numerically using a contour integration 
technique based on the work of Delves t Lyness (1967). The Fourier transform was 
also inverted numerically. 
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FIQURE 3. Dispersion curves - modes 1, 2 and 3: U,/C,  = 0,  Kf = 0.25, q5? = 0,  pf/p, = 1.0, 
C,/C, = 70.0, yt = 0. 

3. Results 
3.1. Dispersion curves and stability 

The propagation and stability of interfacial waves in the present flow-coating system 
was discussed in detail by Duncan et al. (1985). The examples used in their work were 
primarily cases with high damping. The essential details of their discussion will be 
briefly summarized below and the examples will be extended to a wide range of 
damping. In  these examples, the density of the flow is equal to the coating density 
and the ratio C,/C, is set to 70.0 (effectively incompressible). Using Kendall’s (1970) 
data on flow over moving wavy walls, the pressure coefficient Kf is assumed as 0.25. 
The ratio of the wavelength to the boundary-layer displacement thickness in 
Kendall’s experiment was about 17. Since, as will be seen later, the wavelengths in 
the present case are typically several times the coating thickness, the pressure 
coefficient from Kendall’s work corresponds to a thick coating relative to the 
boundary-layer displacement thickness. 

Plots of phase speed versus wavenumber for a purely elastic incompressible coating 
bounded by an ideal flow (K ,  = 0.25, g+ = 0) are shown in figures 3 and 4 for flow 
speeds of 0 and 3.0Ct respectively. For zero flow speed (figure 3), the curves are 
symmetric about the c = 0 axis, indicating that waves propagate in the positive or 
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FIGURE 4. Dispersion curves - mode 1 : UJC,  = 3.0, Kf = 0.25, $f = 0, pr/pc = 1.0, 
C,/Ct = 70.0, yt = 0. 

negative x-direction with the same speed. Three sets of curves are shown representing 
three modes of wave propagation in the coating. The mode-1 curve is defined as the 
one with the lowest Ic(. The phase-speed curves tend to  infinity at small wavenumber 
and a constant value at large wavenumber. Of particular importance for the coating 
response is the existence of a minimum wave speed, which in this case is about O.84Ct. 
For a flow speed of 3.OCt (figure 4), only the first mode is given since i t  is the most 
important for the coating response and the only one significantly effected by the flow. 
Note that the downstream (positive c)  branch has changed little from the zero- 
flow-speed case. The upstream branch has moved toward the c = 0 axis, and for 
wavcnumbers greater than about 3.0, the waves propagate downstream a t  slow 
speed. At still higher flow speeds, the upstream and downstream curves meet and 
a flutter instability appears. 

The waves shown in figures 2 and 3 are neutrally stable in the ideal system with 
no damping in the coating and no phase shifts from the pressure distribution of a 
potential flow over the wavy surface. Damping causes an irreversible loss of 
mechanical energy from the coating. The pressure phase shift causes an irreversible 
transfer of energy between the flow and the interfacial waves system; the direction 
of the energy transfer depends on the wave direction and the sign of the pressure 
phase shift. When the flow speed is less than about C, all waves in the system move 



An incompressible viscoelastic coating in a turbulent boundary layer 347 

upstream or downstream at speeds greater than the flow speed. For all downstream- 
running waves with phase speed greater than the flow speed, the pressure phase is 
such that there is a force on the wave in the upstream direction (Sengupta & Lekoudis 
1985), i.e. energy is transferred from the wave system to the flow. Thus for the 
downstream branch both the damping and the pressure phase shift cause energy to 
be removed from the wave. Duncan et al. (1985) have shown that at these low flow 
speeds all waves in the system are members of Benjamin's (1963) and Landahl's 
(1962) class B. This class of waves is stabilized by energy loss. Thus both the pressure 
phase shift and the damping tend to make the downstream-running waves decay for 
low flow speeds. For the upstream branch, the phase shift causes a force in the 
downstream direction; again both the damping and the phase shift remove energy 
from the wave system. These class-B waves decay also. 

When the flow speed is above C,, but less than the flutter speed, the downstream 
branch is still Class B, but some waves move slower than the flow. For these waves 
the pressure phase shift is in the downstream direction, and energy is transferred 
to the wave tending to make this class-B wave unstable. However, sufficient damping 
can be used to stabilize these waves. The rate of energy transfer from the flow 
increases as the difference between the wave speed and the flow speed increases. Thus, 
as the flow speed is increased, more damping will be required to stabilize the wave. 
As long as the flow speed is low, the upstream branch does not begin to propagate 
downstream; for these waves both the damping and the pressure phase shift will 
cause wave decay. Once the flow speed is increased to U,/Ct = 2.9 the high- 
wavenumber portion of the upstream branch begins to propagate downstream (see 
figure 4) ; these are class-A waves. Class-A waves are stabilized by the pressure phase 
shift (which adds energy) and destabilized by the damping. Thus the damping that 
was added to stabilize the cless-B waves from the downstream branch will destabilize 
the class-A waves from the upstream branch. Further increases in damping do not 
raise the onset flow speed for unstable waves. 

Calculations to define the stability boundary as a function of damping were 
performed. Kf was again chosen as 0.25. When the damping is low the potentially 
unstable class-B waves move downstream at speeds in the range of Ct to 2C,, which 
turns out to be an appreciable fraction of the flow speed. For these waves a value 
of -40" was chosen for $f. From Kendall's data, this value appears to be typical of 
waves moving at these speeds. A t  high damping the potentially unstable class-A 
waves move very slowly. Again, using Kendall's data, q5f has been set to - 10" for 
these waves. The stability boundary determined with these pressure parameters 
appears as a dashed line in the plot of flow speed versus damping shown in figure 
5. An error in choosing Kf and $* will change the results quantitatively somewhat 
but not qualitatively. The stability boundary a t  low damping is determined 
primarily by the minimum wave speed of the coating. Thus, regardless of the pressure 
coefficients the stability boundary will reach the lower limit shown in figure 5 
( U ,  x Ct)  for sufficiently small damping. The stability limit at high damping occurs 
when the waves from the upstream dispersion curve begin to propagate downstream 
at high wavenumber. Duncan et al. have shown that this occurs a t  the flow speed 
given by 

Urn1 = (2 by. (28) 
Ct class A onset Kf Pf 

The pressure coefficient Kf decreases with decreasing wavelength compared to 
boundary-layer thickness. As was pointed out earlier, the value used here is for 
relatively long waves, i.e. thick coatings. Thus, for thinner coatings, the onset speed 

I2 I L U  171 
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FIGURE 5. Regions of stable and unstable response on a plot of Aow speed versus damping: 
pr/pc = 1.0, Kf = 0.25, C,/C, = 70.0. 

at high damping will be increased. At the present time this effect cannot be properly 
quantified owing to insufficient theoretical and experimental data. 

3.2. Response calculations with yt = 0 
The response integral (27 )  was evaluated numerically using the dispersion curves 
discussed previously. The pulse characteristics were chosen as described in 92 to 
imitate the unsteady pressures on a rigid wall under a turbulent boundary layer. 
Thus, the pulse moves with 0.8U,, its shape is given by a2/(az + (2- u d  t)”, the pulse 
half-width a is equal to 1.76*, the pulse lasts for the time it takes to move 12a, and 
it has a maximum strength of 0 . 0 0 5 5 ~ ~  V,. With these restrictions the response is 
a function of three dimensionless variables: the flow speed (U,/Ct), the coating 
thickness (d/6*) and the damping ratio (yt) .  In  the following, the response is first 
explored for a coating with no damping in the range of flow speeds from 0 to 2.8, 
even though the response would not be stable at the higher flow speeds in the 
presence of a real boundary layer. Then the effect of damping on the elastic results 
is examined in $3.5. 

The influence of d/6* and U,/Ct on the coating response is illustrated in the six 
time sequences of vertical surface displacement versus horizontal position shown in 
figure 6. Each time sequence consists of five distributions of surface displacement at 
t = 0.2Td, 0.4Td, 0.6Td, 0.8Td and l.OTd. Both the horizontal coordinate and the 
vertical displacement are normalized by the boundary-layer displacement thickness. 
The vertical scale in the left column is three times that in the right column. Note 
that the horizontal position is given in the reference frame of the pulse. In the left 
column of the figure (a, c,  e), U,/Ct = 1.0, while in the right hand column (b, d , f )  
U,/C, = 2.5. The coating thickness is 8.06* in the upper pair (a, b), 4.06* in the 
middle pair (c, d), and O M *  in the bottom pair (e, f). 

One of the most important results illustrated by figure 6 is that the response 
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FIGURE 7. Phase speed and group velocity versus wavenumber - mode 1 ,  downstream branch: 
llm/C, = 2.5, K ,  = 0.25, #f = 0, pfIpc = 1.0, C,/C, = 70.0, yt = 0. 

consists mainly of waves behind the pulse for the higher-flow-speed cases, while for 
the lower-flow-speed cases the maximum response is local with smaller waves both 
ahead of and behind the pulse. The change from a local to a following-wave response 
occurs a t  U,/C, = 1.2 ( U ,  = 0.96Ct). A shift in the phase of the response just under 
the pulse ( -  1.76* < x < 1.76*) occurs a t  the same flow speed. For U,/C,  less than 
1.2 the response is nearly symmetric (at least a t  early times), while for higher speeds 
i t  is shifted, with the peak just behind the pulse. The phase shift a t  the higher flow 
speed indicates a horizontal force on the coating. Note also that in the two caves with 
thinner coatings and high flow speed (d ,  f )  the positions of the peaks and troughs 
of the following waves are fairly steady relative to the pulse. For the thickest coating, 
the pattern behind the pulse in the high-speed case consists of a single peak which 
continually moves backward from the pulse. 

Many of the above observations can be explained using the dispersion curves. 
Consider first the change in the character of the response at Uw/Ct = 1.2. The total 
response of the coating consists of a local response, which is confined to the vicinity 
of the pulse, and a wavelike response, which can contribute at all ppitions. The local 
response arises from the singularities in the pressure transform Pd (the first term in 
(27)). The wavelike response consists of the free waves excited by the pulse and is 
calculated from the second term in (27). The dominant part of the free-wave 
contribution to  the response consists of waves whose phase speed equals the pulse 
speed, i.e. the positions of the crests and troughs are fairly steady relative to  the 
pulse. A plot of phase speed versus wavenumber for UwIC, = 2.5 is shown in figure 
7. The horizontal line is drawn at  the pulse speed (2.OCJ. The intersection of this line 
and the phase-speed curve indicates the wave that moves with the pulse, i.e. the 
dominant free wave in the response. Note that all the dispersion curves show a 
minimum phase speed for the downstream-running waves. This minimum ranges 
between 0.74 and 0.96 depending on the flow speed. For flow speeds below 1.2, it 
turns out that the pulse speed (0.8U,) is always less than the minimum wave speed 
and there can be no waves moving with the pulse. Thus the contribution from the 
free waves is smaller and the dominant part of the response is local to the pulse. The 
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FIGURE 8. Wavelength of following wavetrain versus flow speed for various values of U,/ U ,  : 
K, = 0.25, = 0, pf/pe = 1.0, C,/Ct = 70.0, yt = 0. 

additional energy needed to generate the following wavetrain at  the higher flow 
speeds is obtained through the horizontal force on the asymmetric surface shape 
under the pressure pulse. Thus it appears that this force is a wave drag. 

In the high-speed cases, the position of the following waves relative to the pulse 
is determined by the group velocity of the dominant wave compared to its phase 
velocity. If the group velocity is less than the phase velocity the waves are left 
behind, while for group velocities greater than the phase velocity the waves are ahead 
of the pulse. A plot of the group velocity for the first-mode downstream dispersion 
curve is included in figure 7. Note that the group velocity is everywhere less than 
the phase velocity, showing that the waves should be behind the pulse. 

The phase-speed and group-velocity curves can be used to compute the wavelength 
and the number of waves in the following wavetrain. The wavelength is just 
27c/(kd), where (kd ) ,  is the wavenumber at the intersection of the phase-speed and 
the pulse-speed curves as shown in figure 7 .  A plot of the wavelength of the following 
wavetrain versus flow speed is shown in figure 8. Since in real boundary-layer flows 
pressure pulses move with speeds from 0.4U, to 0.8U,, curves for U ,  equal to 0.8U, ,  
0.6U, and 0.4U, are presented. Note that the wavelength is proportional to d and 
that the factor of proportionality increases with flow speed on each curve. The curves 
start at the respective onset speed of the following wavetrain for each pulse speed 
and end at the flow-speed stability limit ( U ,  = 2.8CJ.  

To determine the maximum number of waves in the pattern the group velocity 
is needed. The pattern increases in length at  a rate 

during the lifetime of the pulse. Thus, the total number of waves generated is 

The results are plotted in figure 9. Curves are shown for U, = 0.8U,, 0.6U, and 
0.4U,. From pressure measurements on rigid walls (Willmarth 1975), it appears 
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FIQURE 9. Number of waves in the following wavetrain versus flow speed: Kf = 0.25, $t = 0, 
pr/pc = 1.0, C,/C, = 70.0, yt = 0. 

that some of the slower pressure pulses last for considerably longer than the six 
lengthscales of travel used in the above calculations. In these cases the results in 
figure 9 can be scaled linearly. 

In  the high-flow-speed case with the thickest coating, figure 6 ( b ) ,  the single 
following wave is not steady relative to the pulse. There are two reasons for this 
result. First, (30) shows that the number of waves is proportional to 6* /d .  Thus as 
the coating thickness is increased the number of waves decreases. Using figure 9, with 
the conditions corresponding to figure 6 ( b ) ,  we find the number of waves generated 
to be 0.36, i.e. a steady wavetrain does not have time to form during the life of the 
pulse. Secondly, as the coating becomes thick it begins to behave like a semi-infinite 
solid. Surface waves on a semi-infinite solid are dispersionless, having only one wave 
speed (the minimum wave speed of the first-mode dispersion curves shown here). For 
pulse speeds greater than the wave speed, these waves are left behind in the form 
of a single peak as shown in figure 6 ( b ) .  When the pulse moves slower than the 
minimum wave speed, as in figure 6 ( a ) ,  the waves begin to move ahead of the pulse. 

The amplitude of the response is a particularly important parameter for evaluating 
the possibility of a significant interaction between a turbulent flow structure and the 
coating. Note from figure 6 that the amplitude of the response grows as the coating 
thickness increases. This is partly because the coating is incompressible. When the 
pulse width is much larger than the coating thickness, figures 6(e,  f), the coating is 
hard to deform since it cannot be compressed, and material would have to be moved 
horizontally to deform the surface vertically. A5 the coating thickness increases, the 
deformations are easier to make, and the amplitude grows. The effect of flow speed 
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FIQURE 10. Maximum vertical surface displacement versus coating thickness for various speeds : 
K, = 0.25, #f = 0, Pr/Pe = 1.0, CJCt = 70.0, Yt = 0. 

and coating thickness on maximum response amplitude is summarized in a plot of 
maximum vertical displacement versus coating thickness, figure 10. Separate curves 
are shown for flow speeds of l.OC,, 1.5Ct, 2.0Ct and 2.5Ct. The displacements and the 
coating thickness are non-dimensionalized by 6*. Note that maximum displacement 
increases smoothly with coating thickness for each flow speed, asymptoting to  a 
constant value when the coating becomes effectively infinite, d/S* > 18. The 
maximum displacement also increases with flow speed and reaches a maximum of 
about 4 %  S* at Um/Ct = 2.5 and d/6* > 18. 

Also of interest is the horizontal position of the maximum displacement X, 
relative to the pulse position. Figure 11 contains a plot of Xm/6* versus d/6* with 
four separate curves for the flow speeds used in figure 10. The maximum surface 
displacement always occurs behind the pulse centreline. The position of the maximum 
displacement increases with flow speed and coating thickness. The figure demonstrates 
that  the largest vertical displacements in figure 10 occur outside the pulse half-width, 
1.7S*. 

3.3. Energy transfer 

The energy transferred from the pressure pulse to the coating-mean flow system is 
an important quantity for assessing the possibility of influencing the behaviour of 
a turbulent flow structure. I n  this section calculations are presented which show the 
energy transfer as a function of U,/C,  and d/6* .  The total energy transferred during 
the lifetime of the pulse is given by 

The expression for 7 given in $3.2 may be used to  evaluate the total energy transfer. 
Thus, after some algebraic manipulation (31) becomes 
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FIGURE 11. Horizontal position of maximum surface displacement versus coating thickness for 
various flow speeds: K ,  = 0.25, $f = 0, pr/pc = 1 .O, C,lC, = 70.0, yt = 0. 

where p’ = p + ikU,. 

As in evaluating the expression for the displacement, the Laplace transform is 
inverted first. I_t is found that, for elastic coatings, the contributions from the 
singularities in P, cancel out and the total energy transfer becomes 

Equation (33) was evaluated numerically for a variety of conditions and the results 
appear in a plot of energy transfer versus U,/Ct with curves of constant d/S* (figure 
12). The energy is non-dimensionalized by S*2u2,, the energy dissipated in a 
boundary layer during the lifetime of the pulse Td over the distance travelled by the 
pressure pulse, 6(3.4S*) : 

Ed = $pV, C, T,(20.46*) x S*2U2, at R, = 5 x lo5. (34) 

Note that each curve of constant d/S* in figure 12 starts with a very small value (less 
than lop6) a t  low flow speed. The energy transfer increases with flow speed for all 
coating thicknesses. For the thickest coating, a rapid increase of roughly two orders 
of magnitude occurs a t  around U,/C, = 1.2- the speed where the surface 
deformations change from a local response to following-wave response (see $3.2). This 
is probably associated with the wave drag in the higher-flow-speed regime. Similar 
increases occur for the thinner coatings, but the increase is smaller and is delayed 
to higher flow speeds. Even at its maximum energy, the transfer is small compared 
to the dissipation scale, reaching only 5 x lop4 for a flow speed of 2.OCt and the 
thickest coating. 
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FIGURE 12. Energy transfer from the pressure pulse to the flow-coating system versus flow 
speed for various coating thicknesses: K ,  = 0.25, = 0, pr/p, = 1.0, C,/Ct = 70.0, yt = 0. 

3.4. Wave patterns 
The dispersion relations from the two-dimensional theory can be used in an 
approximate, quasi-steady theory to obtain the lines of constant phase of the surface 
wave pattern for the full three-dimensional case. In this theory, the wave pattern 
is assumed to be much like the pattern from a steady source moving at constant 
speed, but the number of waves in the pattern is limited owing to the finite lifetime 
of the pulse. This assumption is validated by the results in figure 9, which predict 
that the pulse generates a number of waves in its lifetime. 

Wave patterns produced by steady sources moving through dispersive media have 
been studied by a number of authors. In the present analysis, the results of Keller 
& Munk (1970) are used. The case of a wave source moving at  constant strength and 
speed on a coating with no flow is examined first. It is then shown that the pattern 
in the presence of the flow is quite similar. In the zero-flow-speed case the wave 
propagation is horizontally isotropic and the relations describing the lines of constant 
phase are greatly simplified. From Keller & Munk 
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FIGURE 13. Phase speed and group velocity versus wavenumber - mode 1 downstream branch: 
U,/Ct = 0, K! = 0.25, #f = 0, pr/pc = 1.0, CJCt = 70.0, Yt = 0. 

FIGURE 14. Three lines of constant phase for a steady pressure pulse: U ,  = 1.84Ct, U,/Ct = 0, 
Kf = 0.25, #f = 0, pf /pc = 1.0, C,/Ct = 70.0, yt = 0. 

where q5 is the phase and U ,  is the speed of the pulse. These equations give the 
position of lines of constant phase as parametric functions of k ,  the wavenumber. 
Note that k appears both directly and indirectly through c ( k )  and cg(k ) .  Figure 13 
contains a plot of c and cg versus k for the zero-flow-speed case. Note that, as in the 
results for U ,  = 2.515'~ (figure 7),  the waves become dispersionless ( c  = cg)  as k + c o  
and that for all finite k ,  cg is less than c .  A plot of several lines of constant # (= 1.0, 
7.28, 13.56) obtained with the dispersion relations in figure 13 and a pulse speed of 
lid = 1.84Ct is shown in figure 14. The entire pattern is made of waves with c < U,, 
a statement which is explained physically by the theory of Keller & Munk (1 970) and 
verified by the necessity of keeping the radical in (35) real. For waves along Lhe 
centreline, where the crests are normal to the direction of travel, the phase speed 
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FIQURE 15. Half-angle (0,) of the wave pattern due to a pressure pulse versus flow speed: 
Kf = 0.25, q5f = 0, pf/p, = 1.0, C,/Ct = 70.0, 'yt = 0. 

equals the pulse speed; the waves off the axis of travel have slower speeds and, 
consequently, shorter wavelengths (larger kd). The waves a t  the outskirts of the 
pattern (kd+ 00)  are dispersionless and (35) reduce to the equation of a straight line. 
The angle of these wavefronts to the direction of travel (see figure 14) is given by 

where c ,  is the phase speed at large wavenumbers. Thus as the speed of the pulse 
is increased the angle of the pattern will decrease. The centreline wavelength 
increases with speed. Since the pattern is made of waves with c G U,, there is no 
pattern if the pulse speed is less than the minimum wave speed. 

In the case where a flow accompanies the moving pulse, the wave propagation is 
horizontally anisotropic because the flow speed in (25) must be replaced by the 
effective flow speed ( U ,  sine, where 0 is the angle between the wave crest and the 
flow direction). Because the phase and group velocity curves for the downstream 
branches are qualitatively similar a t  all flow speeds (compare figures 7 and 13), one 
can expect that the wave patterns will also be similar to the zero-flow-speed case. 
In  the centre section of the pattern, the lines of constant phase are nearly 
perpendicular to the flow direction, indicating U ,  sin8 = U,. Here the two- 
dimensional theory applies and the centreline wavelength (figure 8) and the number 
of waves (figure 9) were computed previously. Further from the pattern centreline, 
the lines of constant phase quickly become straight. The angle of these waves to the 
flow is still given by (36) where c ,  is the wave speed a t  large k with the appropriate 
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FIGURE 16. Wave patterns on a gelatin coating under a turbulent boundary layer. The flow is from 
right to left. The camera is looking down on the surface with a shallow angle (from the film by 
Chu, Falco & Wiggert 1984). 

effective flow speed U ,  sine,. Since 0, is not known, c, is also undetermined. 
However, over the entire range of flow speeds c, ranges from 0.96 to 0.74. The 
minimum value of 0.74 occurs a t  U ,  sin 8 = 2.8, the stability limit. The maximum 
value, 0.96, occurs at around U ,  sin0 = 1.0. The range of effective flow speeds 
experienced by the waves in the outer parts of the pattern is considerably less. For 
instance, with u d  = 0.8U,,  the minimum flow speed to have a wave pattern is about 
1.2Ct. At this speed the outer parts of the pattern move in the flow direction (0, = 0) 
and the effective flow speed is about 1 .2Ct. At the maximum flow speed ( U ,  = 2.8, 
u d  = 2.24) we find 8, = 24", using a typical c, of 0.9 in (36). This results in an 
effective flow speed of 1.13. Therefore, the effective flow speed for the outer parts of 
the pattern is always around 1.0 and we use c, = 0.96 accordingly. Figure 15 
contains a plot of 0, versus flow speed for U, = 0.4U,, 0.6U, and 0.8U,. Each 
curve begins at its own onset flow speed ( U ,  = c,) and ends at the maximum 
stability limit for a coating with damping, U ,  = 2.8Ct. The pattern angle decreases 
from 90" a t  onset to as low as 25" a t  the stability limit. For a given flow speed, the 
pattern angle increases as the pulse speed decreases. Chu, Falco & Wiggert (1984) 
have filmed the response of a Gelatin coating under a turbulent boundary layer. The 
data from the films has not been published as yet. Figure 16 is a still picture from 
their film showing a perspective view of several isolated wave patterns which look 
qualitatively similar to the pattern in figure 15. The flow direction is from right to 
left with magnitude 1.65Ct. 
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3.5. Response with damping 

The response calculations presented in the previous sections were performed with no 
material damping, yt = 0, and no pressure phase shift from the potential-flow 
calculation of the pressure distribution over the wavy surface. I n  $3.1 it was pointed 
out that  for flow speeds above 1 .OC,, pressure phase shifts in the mean boundary-layer 
flow over the wavy surface tend to destabilize the response. If damping is added to 
the material the stable range of flow speeds can be increased to 2.86Ct (see figure 5). 
I n  the ideal system used for the calculations of the previous sections, the response 
was neutrally stable. I n  the present section, several calculations are discussed which 
show the effect of the damping that must be added to stabilize the response in the 
presence of a real boundary layer. 

Four sets of coating-response histories are shown in figures 17 (a -d ) .  Each plot is 
for the same flow speed (2.5CJ and coating thickness (46*). The damping ratio 
increases from 0.0 in figure 17(a) to 1.0 in 17(d). Figure 17 ( a )  is identical with figure 
6(d). The response shown in figure 1 7 ( b )  (yt  = 0.05) is quite similar to  the response 
with no damping; however the maximum amplitude is reduced by about 14 yo. From 
the stability diagram in figure 5 ,  it can be seen that this amount of damping is 
sufficient to stabilize the system up to  a flow speed of about 2.7Ct, very close to  the 
maximum stable flow speed for any amount of damping. Thus, i t  appears that  the 
response results of the previous sections in which the damping was set to zero are 
valid for the cases with sufficient damping to  stabilize the response with a real 
boundary-layer flow. 

The response with yt = 0.3 is shown in figure 17 (c). Here the maximum amplitude 
is reduced by 59% from the response with yt = 0. Also note that the later parts of 
the following wavetrain have been almost completely damped out. The response in 
figure 17 ( d ) ,  yt = 1.0, shows a viscous rather than a damped elastic character. The 
surface under the path of the pressure pulse is lifted by the low pressure and then 
relaxes back according to the relaxation time of the material 7t. From the definition 
of yt, 7, = d/Ct for this case. The time for the pulse to move over one of its own 
lengthscales is 3.4S*/(0.8Um) which is equal to 0.425d/Ct for d = 4.06* and 
U ,  = 2.5Ct. Thus the viscous relaxation time is larger than the timescale for the 
movement of the pulse. The length of the scar in figure 17 ( d )  covers nearly the entire 
distance travelled by the pulse (20.46*) in its lifetime. A response of this type 
(streamwise scars) was noted by Hansen et al. (1979) for turbulent flow over a 
plastisol coating. Panico & Kubota (1983) derived a similar result for a point load 
moving over a coating with no fluid flow. For yt above 1.0, the stiffness of the 
material begins to scale with the viscous properties of the material. The pressure 
available to  deform the surface is proportional to  V,. I ts  maximum value is limited 
by the stability limit on U ,  (2.817,) which scales with the elastic properties of the 
material, even for large damping. Thus the amplitude of the response will continue 
t o  decrease as the damping is increased. 

4. Overview 
The characteristihs of the response of an  incompressible, viscoelastic coating are 

summarized on the plot of flow speed (U,/Ct) versus damping ratio (yt = 7t C'Jd) 
shown in figure 18. The dashed line divides the plot into an upper region where the 
response is unstable and a lower region where the response is stable. For low to 
moderate damping (0 < yt < 0.05), a phase-lag instability (Benjamin's class B) 
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FIQURE 17. The effect of damping (yt) on the time history of the vertical displacement at the coating 
surface. Each time history contains five plots of displacement versus x at t = 0.2Td, OAT,, 0.6Td, 
0.8% and 1.0%. All plots are in the reference frame of the pulse: U,/Ct = 2.5, Ud/Ct = 2.0, 
d/S* = 4.0, Kf = 0.25, q+ = 0, pf/pc = 1.0, Cl/Ct = 70.0. (a) yt = 0 ;  ( b )  0.05; (c) 0.3; (d )  1.0. 

occurs first as the flow speed is increased. The onset flow speed for this instability 
increases from l.OCt at zero damping to nearly 2.8 at  yt = 0.05. For yt > 0.05, a 
damping instability (Benjamin’s class A) occurs at  the stability boundary with an 
onset speed of 2.86Ct. In the unstable region, the surface of the coating is covered 
with two-dimensional, organized wavetrains whose amplitude will be determined by 
nonlinear effects not considered in this paper. The response to turbulent flow events 
like bursts is of much smaller amplitude and is masked by the unstable waves. The 
region of stable response is divided into three subregions. For yt < 0.5 and flow 
speeds less than 1 .2Ct, the pressure pulses from the turbulent boundary layer move 
slower than the slowest interfacial wave of the flow-coating system. In this region, 
the response is symmetric to the pressure pulse for early times in the life of the pulse 
and at later times disturbances can move ahead of the pulse. The amplitude of the 
response increases with both flow speed and coating thickness and decreases slowly 
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with damping. The maximum amplitude qmax is about 0.016*. When the flow speed 
is above 1.2Ct but less than the stability limit, and the damping ratio is less than 
0.5, there are waves in the system with speeds less than or equal to the pulse speed. 
These waves form a V-shaped pattern behind the pulse. For a given ratio of pulse 
speed to flow speed, the centreline wavelength increases and the half-angle of the 
pattern decreases as the flow speed increases. The surface response just under the 
pressure pulse is antisymmetric, indicating a wave drag on the pulse. In this region, 
the response amplitude also increases with flow speed and coating thickness, reaching 
a maximum of O.O4S* for d > 18S*, flow speeds of 2.8Ct, and yt = 0.05. This 
maximum amplitude, which is about equal to the viscous sublayer thickness at 
R, = 5 x lo5, indicates the possibility of an interaction between the coating and the 
turbulent flow structures. It should be noted that the limit on response amplitude 
is a consequence of the limit on stable flow speeds. The coating deformations scale 
with the magnitude of the pressure fluctuations (0.0055pUa,) divided by the stiffness 
of the coating @, q). Since the flow becomes unstable with U, exceeds 2.S6Ct, this 
ratio can not exceed 0.045 and the amplitudes are consequently limited. 

The work done by the pressure pulse (the energy transferred from the pulse to the 
coating-mean flow system) increases slowly with flow speed at first, then, near 
U ,  = 1.2Ct, it increases rapidly only to reach a new plateau for higher flow speeds. 
The work done increases with coating thickness. Its maximum value is 
5.0 x 10-4S*2Ua, is about equal to the energy dissipated in the boundary layer over 
a length equal to the distance travelled by the pulse and over a time equal to the 
lifetime of the pulse. 

In the high-damping region (yt > 0.5) the response is more viscous than elastic in 
character. The relaxation time of the material becomes greater than the pulse 
timescales and the response consists of a scar on the coating surface covering the 

Viscous response., 
scars 
Tmu = 1.0%6* 

1.0 - Elastic response, 
no following wavetrain 
'tmu = 1.0%6* 

E,, = 3 x 10-4(8*)* u~ 
I I I I .I 
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length travelled by the pressure pulse. The amplitude of the response decreases 
rapidly with increasing damping. I ts  maximum value is about 0.016* at  yt = 1.0, 
U ,  = 2.8Ct and d > 18S*. 

5. Concluding remarks 
The response of an incompressible, viscoelastic coating to pressure fluctuations in 

a turbulent boundary layer has been studied with a quasi-interactive model. The 
results indicate that the stable response of the coating may be large enough, a t  least 
a t  flow speeds near the stability limit, to alter the behaviour of turbulent flow 
structures in the boundary layer. The theory provides a guide for experiments or 
numerical investigations into the full interaction. 
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